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e introduce several new classes of graphs on which the maximum-weight

clique problem is solvable in polynomial time. Their common feature, and the
3 central idea of eusvalgorithms, is that every clique of any of -&‘;"graphs is
contained in some member of a polynomial-sij_ed‘collection of induced subgraphs
that are complements of bipartite graphs. ét;r approach is quite general, and
might conceivably yield many other classes of graphs along with corresponding
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0. INTRODUCTION

The maximum-weight clique problem, or MWCP for short, goes as follows:

given a graph whose vertices carry numerical weights, find a clique (that is,
a set of pairwise adjacent vertices) whose total weight is as large as
possible. This problem is notoriously hard, even when all the weights are
equal; the problem of deciding whether a prescribed graph contains a clique of
a prescribed size is NP-complete; in fact, this problem was one of the five

prototypes of NP-complete problems presented by Cook (1971) in the classical

paper that laid the foundations of NP-completeness theory.

Nevertheless, there are several known polynomial-time algorithms each of
which solves the MWCP on all graphs coming from some restricted class. In
this paper, we present new algorithms of this kind. The method used to design
these algorithms is quite general, and might conceivably yield many other

algorithms.

1. THE RESULTS

We reserve the letter n for the number of vertices of a graph G. If C is
a class of graphs and t is a number, we say that C is t-bounded if every G in
C has O(nt) maximal cliques. (Here, as usual, "maximal" is meant with respect
to set inclusion, not size.) We say that C is tame if no G in C contains an
induced subgraph that is an odd antihole (defined as the complement of an odd
hole, i.e. of a chordless cycle whose length is odd and at least five). We
say that a green/red coloring of the edges of a graph is C-formative if the
green graph belongs to C and the red graph contains no triangle. OQur key

result goes as follows.




THEOREM 1. For every t-bounded and tame class C there is an algorithm

that, given any graph G along with a C-formative coloring of its edges, solves
any MWCP on G in 0(n2t+3) steps. | |

Our prime exampie of a t-bounded and tame class of graphs is the class TR
of trianqulated graphs, defined as graphs in which every cycle of length at
least four has a chord. These graphs were introduced by Hajnal and Surényi
(1958) and studied further by Berge (1960), Dirac (1961), and many others. In
particular, Dirac proved that every triangulated graph has a simplicial
vertex, defined as a vertex whose neighbours are all adjacent to each other;
an instant corollary of this theorem states that every triangulated graph has
at most n maximal cliques. Hence TR is l-bounded; since every odd antihole
contains a chordless cycle of length four or five, TR is also tame.

Now let C1 stand for the class of all graphs that admit C-formative edge
colorings. Theorem 1 provides a polynomial-time algorithm for solving any
MWCP on any graph in some subclass C* of C1 if and only if a polynomial-time
algorithm to find a C-formative edge coloring of every graph in C* is
available. In particular, if such an algorithm is available for every graph
in Cl, that algorithm can be used to test membership in cl. Our next result

shows that the existence of such an algorithm is unlikely when C = TR.

THEOREM 2. Testing membership in TRl is an NP-complete problem.
Thus we are led to look for some proper subclass C* of C1 with a
polynomial-time algorithm to construct a C-formative edge coloring of every
graph in C*, One way of doing this is to impose additional constraints on the
C-formative edge colorings. For instance, rather than requiring that the red
graph contain no triangle, we might insist that it be bipartite. This idea

leads to the following notion: we say that a partition of the vertex set of G

into disjoint parts Vi and Vy is C-formative if each of the two subgraphs of G




induced by V; and V, belongs to C. Clearly, as long as C is closed under

disjoint unions, each C-formative vertex partition of G yields a C-formative
edge coloring of G. In this case, Theorem 1 has an instant collary with
"coloring of its edges" replaced by "partition of its vertices". In fact, the

assumption that C is tame can be dropped, and the resulting statement holds

true even if C is not closed under disjoint unions.

THEOREM 3. For every t-bounded class C there is an algorithm that, given
any graph G along with a C-formative partition of its vertices solves any MWCP
on G in 0(n2t*3) steps. ||

Ltet €2 stand for the class of all graphs that admit C-formative vertex
partitions. We have observed that C2 < C1 whenever C 1is closed under

2 < TRI. Examples of graphs in TRZ_TR are

disjoint unions; in particular, TR
a1l holes and antiholes. For holes this is obvious. For an antihole, let Vi
and vz be the odd-numbered and even-numbered vertices, respectively, of the
cycle whose complement 1is the given antihole. Then V; and V, is a
TR-formative vertex partition of the antihole. Exampies of graphs in TRI-TR2
are all graphs that contain no triangles and whose chromatic number exceeds
four. (Triangle-free graphs of an arbitrarily high chromatic number were
constructed first by Tutte, writing under the name of Blanche Descartes
(1954); another family of such graphs was constructed independently by
Mycielski (1955). For a strong result on such graphs, see Erdgs (1959)
and Lovasz (1968).) Trivially, every such graph G be]ongs to TRl (color

a1l edges red). To see that G ¢ TR2, observe that every triangulated induced

subgraph of G is a forest; since the chromatic number of G exceeds four, two

such subgraphs cannot cover all the vertices of G.




Again, Theorem 3 provides a polynomial-time algorithm for solving any
MWCP on any graph in some subclass C* of c2 if any only if a polynomial-time
algorithm to find a C-formative vertex partition of every graph in C* is
available. Again, if such an algorithm is available for every graph in Cz,
then the algorithm can be used to test membership in c. Again, we have a
result showing that the existence of such an algorithm is unlikely when C =
TR.
THEOREM 4. Testing membership in TRZ is an NP-complete problem. ||
To obtain a subclass C* of C2 such that a C-formative vertex partition of
every graph in C* can be found in polynomial time, we may begin with any
polynomial-time heuristic that attempts to construct the partition, and then
simply define C* as the class of those graphs on which the heuristic
succeeds. (The same approach can of course be used to obtain a subclass of C1
such that a C-formative edge coloring of every graph in the subclass can be
found in polynomial time.) We use this approach with heuristics based on a
certain subroutine that we call GREEDY. The input of GREEDY is any graph G
whose vertices have been labeled as V1sVoseeesVpd its output is either a
C-formative vertex partition of G or a failure message. In the description of
GREEDY and later on, we let G(S) denote the subgraph of G induced by S.
GREEDY:
V1 - 0, V2 )
for i = 1,2,...,n do
V1 - V1 u (V.1
else V, « V, u ivy}

if G(Vz) e C then return V; and V,

else return a failure message endif

............................................

.........
..........................................
................
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Note that GREEDY runs in time 0(nS*l) whenever membership in C can be tested
in 0(n%) steps for some constant s.

Since GREEDY works with labeled graphs, it gives rise to a variety of
algorithms working with unlabeled graphs: each of these algorithms first
labels the vertices and then applies GREEDY. In the remainder of this
section, we shall discuss three special cases in detail.

First, the simplest way to construct a labeling of the vertices of G is
to take an arbitrary labeling; we shall let €3 denote the class of graphs on
which the resulting algorithm always delivers a C-formative vertex
partition. To put it differently, G belongs to ¢3 if and only if GREEDY
succeeds on G for each of its n! labelings.

THEOREM 5. Let C be any t-bounded class of graphs such that members of C
can be recognized in 0(n2t+2) steps. Then any MWCP on any graph in ¢3 can be
solved in 0(n2t*3) steps.||

Note that the hypothesis of Theorem 5 is satisfied when C=TR and t=1:
Dirac's theorem implies at once that triangulated graphs can be recognized in
0(n4) steps. (Actually, the runnning time of an algorithm designed by Rose,
Tarjan, and Lueker (1976) to recognize triangulated graphs is only O(nz), but
0(n4) is good enough for our purpose.)

COROLLARY 5A. Any MWCP on any graph in TR3 can be solved in O(ns)
steps. ||

Our second algorithm attempts to construct a labeling whose properties
guarantee the success of GREEDY. [f such a labeling is found then GREEDY is
applied; else a failure message is returned. To explain the details, we need

two more definitons. First, a vertex v in a graph F will be called

C-acceptable if F-v contains no disjoint sets 51'52 of vertices such that

F(Sl) e C, F(Sz) ¢ C, F(S1 v {v}) £ C, F(S2 u {v}) £ C.

----------




Second, a labeling VisV2se..oV, Of the vertices of G will be called
C-formative if each v, is C-acceptable in G({vl,vz,...,vk}). Clearly, if
GREEDY is given a graph G with a C-formative labeling, then it finds a
C-formative vertex partition of G. (Here, we are tacitly assuming that graphs
with no vertices at all belong to C.) The following algorithm, given any
graph G, will either find a C-formative labeling of G or establish that no

such labeling exists.

LABEL:
F«G, ken, failure«false
While k > 0 and failure = false do

if F has a C-acceptable vertex v

then v «v, FeF-v, kek-1
else failure«true
endif
endwhile
if k = 0 then return vy, vy, «uoy vV
else return a failure message
endif

Note that LABEL runs in time 0(n5+2) whenever (-acceptable vertices can be
recognized in 0(n%) steps for some constant s.

Let C denote the class of all graphs on which LABEL succeeds. (This
class is well-defined: the success of LABEL is independent of the choice of v
in each iteration.)

THEOREM 6. Let C be any t-bounded class of graphs such that memebers of

C can be recognized in 0(n2t*2) steps, and C-acceptable vertices can be
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recognized in O(nZt*l) steps. Then any MWCP on any graph in ¢4 can be solved
in 0(nt+3) steps.||

Trivially, a vertex v in a graph F is TR-acceptable if and only if F-v
contains no disjoint sets Sl' S, of vertices such that both F(S1 v {v}) and

F(S2 v (v}) are chordless cycles of 1length at least four. To put it

differently, v is not TR-acceptable if and only if F-v contains vertex
disjoint paths P1sP» such that each P; has at least two edges, and its
terminal points Xj2yq are adjacent to v in F. Ffor each fixed choice of
X1:¥1sX2s¥2, the existence of P1,P2 can be tested by efficient algorithms
designed independently by Seymour (1980) and Shiloach (1980). In particular,
Shiloach's algorithm runs in time 0(n3); it follows that TR-acceptable
vertices can be'recognized in 0(n7) steps.

COROLLARY 6A. Any MWCP on any graph in TR can be solved in 0(nd)
steps. ||

Note that TR® £ TR® and TRY £ TR¥:  the antihole with seven vertices

belongs to TR3-TR? and the graph shown in Fig. 1 belongs to TRA-TR3,

Figure 1




However, Corollary 6A holds with TR4 replaced by a certain class TRI such that

3 4 . 1% < TR?,

TR o TR
More generally, consider an arbitrary class C of graphs. LABEL, given an
arbitrary graph G, will produce some induced subgraph F of G and a labeling
Viee]sVks2s o+ sVp Of the vertices in G-F. It is an easy exercise to show that
F depends only on G and C; we set G ¢ C5 if and only if F ¢ C3.
Trivially, a C-formative vertex partition of any G in C can be constructed by
i first taking an arbitrary labeling vi,vy,...,v, of the vertices of F and then
applying GREEDY.

THEOREM 7. Let C be any t-bounded cle¢s: of graphs such that members of C

can be recognized in 0(n2t+2) steps, and C-acceptable vertices can be
recognized in 0(n2t+1) steps. Then any MWCP on any graph in C3 can be solved
in 0(n2t*3) steps. ||

COROLLARY 7A. Any MWCP on any graph in TR? can be solved in 0(n9)
steps.|]

Examples of graphs in TR5 - (TR3 u TR4) can be obtained by joining a
graph in TR4 to a graph in TR3 by an appropriate set of edges. For instance,
joining the vertices 1, 6 and 7 of the graph in Figure 1 by three edges to any
three vertices of the antihole on seven vertices yields a graph in TR5.

4

As we have observed, C5 H C2; since G <« C if any only if F has no

43C5.

vertices at all, we have C Finally, if C is hereditary in the sense
that every induced subgraph of every grapn in C is also in C, then 3 s
hereditary, and so C3 < CS.

variations on the theme of C5 abound. For instance, observe that all
bipartite graphs and complements of all bipartite graphs belong to TRZ; in

fact, a TR-formative vertex partition of each of these graphs can be found in




0(n2) steps. This observation suggests setting G ¢ TR6 if and only if
F e TR3 or F is bipartite or the complement of F is bipartite.

THEOREM 8.  Any MWCP on any graph in TR® can be solved in O(ng) steps. ||

5 < TRS < TRC. Examples of graphs in TRE.TRY can

3

Trivially, we have TR
be obtained by joining a graph in TRY to a bipartite graph not in TR™ u TR4
by an appropriate set of edges. For instance, joining the vertices 1, 6, 7 of
the graph shown in Fig. 1 by three edges to any three vertices of KS,S - e
(where e is an arbitrary edge of the complete bipartite graph K5’5) yields a
graph in TRO_TRS. As examples of graphs in TRZ-TRG, we mention the antiholes
with n vertices for n 2 9.

In closing this section, we recall that members of TRY are recognizable
in O(ng) steps. We know no polynomial-time algorithm for testing membership
in TR3 or TRY or TR6, although for each of these classes there is a polynomial

time algorithm that, given any graph G, solves the MWCP on G or shows that G

does not belong to the class.

2. PROOFS

We begin with two well-known facts; their proofs are included for the

-
:rv,'-_

sake of completeness.

FACT 1. There is an algorithm that, given any graph G, Tlists all the
maximal cliques in G in O(nzkz) steps, with k standing for the number of items
on the 1list.

PROOF. The following algorithm will do.

SN RSUIAE ( DEMMASAINANS [ Lty
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vertex set of G; LIST«(g}.
while V #0 do

RO
<
+
ot
=
(-

remove a vertex w from V

5°5%2",

Nethe set of all neighbours of w that 1ie outside V
- t«0
X for all Q in LIST do
P«Q n N, tet+l, Qt«P u {w}
if P = Q then LISTLIST - iQ} endif
endfor
for j = 1,2,...,t, do
SMALL(j)«false
for i = 1,2,...,j-1 do
if Q; =0y then SMALL(i)+true endif
if Qj < Q, then SMALL(j)«true endif

A

endfor

A

endfor

A L

for j = 1,2,...,t do
if SMALL(Jj) = false then LIST«LIST o {Qj} endif

Lk ,l'.,..

g endfor
> endwhile. ||

. Actually, the running time of an algorithm designed by Tsukiyama, Ide,
51 Arioshi and Shirokawa (1977) to 1ist all the maximal cliques in G is only
t 0(n3k), but O(nzkz) is good enough for our purpose.

f FACT 2. There is an algorithm that, given any graph G along with two

cliques in G whose union contains all the vertices of G, solves any MWCP on G

in 0(n3) steps.
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PROOF. The MWCP reduces to the problem of finding a minimum capacity cut
in a network N constructed as follows. No generality is lost by assuming that
the two cliques, 01 and Qz. that cover all the vertices of G are disjoint.
For nodes of N, take all nodes of G and two extra nodes, s and t; for arcs,
take

(*) an arc si of capacity equal to the weight of i for each i in Ql'
(*) an arc jt of capacity equal to the weight of j for each j in Q,,
(*) an arc ij of infinite capacity for each choice of i in Q) and j
in Qz such that i and j are not adjacent in G.
A cut in a network with source s and sink t is any set $ of nodes such that
seS and t ¢ S; the capacity of this cut is the sum of the capacities of
all the arcs ij with i ¢S, j#S. In our network, the capacity of a cut §
is finite if and only if the set Q defined by
Q= (Q) n 5) v (Qn\S)
is a clique of G; if this is the case then the weight of Q and the capacity of
S add up to the total weight of all the vertices of G. Thus finding a clique
of maximum weight in G amounts to finding a cut of minimum capacity in N. The
latter problem can be solved by a variety of efficient algorithms; in
particular, an algorithm designed by Malhotra, Kumar, and Maheshwari (1978)
runs in time 0(n3); for details of its implementation, see Chvatal (1983,
pp. 380-386).]]|

Our key notion is that of a clique basis, defined as a set of cliques

01,02,...,Qk in a graph G such that each clique in G is a subset of some
Qi u Qj. Our key observation goes as follows.

FACT 3. There is an algorithm that, given any clique basis 01,02,...,Qk

in any graph G, solves any MWCP on G in 0(n3k2) steps.

. Ve W GO
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(A proof is hardly required: to solve the MWCP on G, we only need to
: solve k(k-1)/2 problems on the subgraphs of G induced by Qi v Qj.)
Our theorems will be proved in a permuted order.

PROOF OF THEOREM 1. By virtue of Facts 1 and 3, we only need to show

& ¢« & a4 & 82

that all the maximal cliques in the green graph consitute a clique basis in
S G. For this purpose, consider an arbitrary clique Q in G and let F be the
3 subgraph of the red graph induced by Q. By assumption, F contains no
= triangle; since Q is a clique in G and since C is tame, F contains no odd
hole. Thus F is bipartite; to put it differently, Q is covered by two cliques
of the green graph. ||

PROOF OF THEOREM 3. We only need to observe that all the maximal cliques
in the subgraphs of G induced by Vl and Vz constitute a clique basis in G.||
: PROOF OF THEOREM 4. Lovasz (1973) proved that the problem of

recognizing bicolorable hypergraphs is NP-complete, and that it remains
NP-complete even when the input is restricted to hypergraphs with all edges of

; size three. (A hypergraph is a collection of sets Ey,E;,...,E, called edges
' whose elements are called points; the hypergraph is called bicolorable if its
points can be ‘colored black and white in such a way that no edge is
monochromatic.) [t follows easily that recognizing bicolorable hypergraphs is
an NP-complete problem even when the input is restricted to hypergraphs with
all edges of size four. Given any such hypergraph H, we shall construct a
graph G such that G ¢ TR2 if and only if H is bicolorable.

First, let us construct a graph F with distinguished vertices x and y
such that F ¢ TR2 and such that x and y must belong to distinct parts of
every TR-formative partition of the vertex set of F, This is easy to do:

take a K3,3 (the complete bipartite graph with three vertices in each part),

el e el e el e e O TP PO
...........................................
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add two nonadjacent vertices x and y, and join each of these two by edges to
all the vertices of the K3'3.

To construct G, we create a copy of F for every pair (E,p), where E is an
edge of H and p ¢ E; the two distinguished vertices of this F will be Tabeled
x(E,p) and y(E,p). Then for each p, we identify all the vertices labeled
y(E,p), y(E',p), y(E",p),... and 1label the resulting single vertex p*.
Finally, for each edge E of H, we enumerate the elements of £ as a,b,c,d and
create a chordless cycle of length four in G by joining each of x(E,a), x(E,b)
to each of x(E,c), x(E,d).

To see that G ¢ TRZ only if H is bicolorable, consider any TR-formative
partition of the vertices of G and, referring to the two parts as "black" and
"white", assign to each p in H the color of p* in G. We only need to show
that no edge £ of H is monochromatic. For this purpose, enumerate the
elements of E as in the ccnstruction of G and note that the vertices x(E,a),
x(E,b), x(E,c), x(E,d), inducing a chordiess cycle of length four, cannot all
have the same color. Since the color of each x(E,p) differs from that of p*,
the desired conclusion follows.

To see that H is bicolorable only if G ¢ TRZ, consider any bicoloring of
H. Transfer the color of each p in H to p* in G, give each x(E,p) the color
that differs from the color of p* and, in each F used in the construction of
G, color one part of the K3’3 black and the other part white. Clearly, each
of the two color classes induces a forest in G.]|

PROOF OF THEOREM 2. Given any graph H we shall construct a graph G such

L if and only if H ¢ TRZ.

that G : TR
First, let us construct a graph F with a distinguished edge xy such that

Fe TR1 and xy must be green in every TR-formative edge coloring of F. This

can be done by taking any graph Fo of a chromatic number greater than six that




-

. contains no triangle, adding two adjacent vertices x and y, and joining each
of these two vertices by edges to all the vertices of the Fo- (Trivially,
Fe TRI: color all the edges of Fqy red, and all the remaining edges of F
green. To see that xy must be green in every TR-formative edge coloring of F,
- assume the contrary. Writing 2z ¢ Vx if zx is green, and 2z ¢ Vy if zy is
green, observe that each vertex of Fo belongs to Vx u Vy, and that each of
the three graphs induced in Fy by Vx A Vy, Vx-Vy and Vy'vx is bipartite.
This contradicts the fact that the chromatic number of FO exceeds six.)
. To construct G, we take disjoint graphs Fl,FZ,F3,H such that each Fi is a
copy of F with distinguished edge x;y;. Then we identify ¥1 with x5, identify
yo with x5, add edge x;y3, and Jjoin each of the two vertices X1»Y¥3 by edges to
all the vertices of H.

To see that G ¢ TR1 only if H ¢ TRZ, consider any TR-formative edge
coloring of G. Since X1¥1» X2¥2 and x3y3 are all green, x;y3 must be red.
For each vertex v of H, write v ¢ Vx if vXy is green, and write v ¢ Vy if
vy3 is green. C(learly, each vertex of H belongs to precisely one of these two
sets (else vX1¥3 would be a red triangle or VX1X2X3Y3 would be a green
chordliess cycle) and each edge of H with both endpoints in the same set is
i green. It follows that Vx and Vy form a TR-formative vertex partition of H.

- A straightforward reversal of this argument shows that every TR-formative
vertex partion of H yields a TR-formative edge coloring of G; hence H ¢ TR2
only if 6 e TRE]|]

Theorems 5-8 and their collaries require no proofs: they follow easily

from Theorem 3 and the observations made in Section 1.




P e T e e e L R I S A Y v e e W e e W e T T Y R VT I N S VN o~ -y |

3. COMPARISONS WITH PREVIOUS RESULTS
The size of an instance of the maximum-weight clique problem is, roughly

speaking, the amount of space required to record the data:

n
size = n+m+ Tog,n (1 + w,)
121 10 i

with n standing for the number of vertices, m for the number of edges, and wj
for the weight of the i-th vertex. An algorithm for solving the MWCP with

input graphs restricted to some class C is referred to as a polynomial-time

algorithm if, for some constant t, it solves any MWCP on any G in C in

L4
>

0(sizet) steps. We shall now discuss classes C for which such algorithms have
been designed; for each of these classes C, we shall point out graphs that
belong to TR3 n TR4 but do not belong to C.
First, a graph is called perfect if, for each of its induced subgraphs F,
the chromatic number of F equals the largest size of a clique in F. A
. polynomial-time algorithm for solving the MWCP on perfect graphs has been
: designed by GrStsche1, Lovisz, and Schrijver (1984a). Chordless cycles whose
length is odd and at 1least five are not perfect, but the do belong to
3 o R4
B Second, Grotschel, Lovasz  and Schrijver (1984b) also designed a
polynomial-time algorithm for solving the MWCP on complements of h-perfect
graphs, defined as graphs for which the convex hull of the incidence vectors
of stable sets is given by the clique inequalities, the odd cycle

inequalities, and the nonnegativity conditions. The graph shown in Fig. 2 is

. not h-perfect, but its complement belongs to TR3 n TR4.

T '-;.."..“'--".-

et e e e e e e A e T A e e e e A N AL N s O S N
. 'y ® ARG “4" 1- (..v‘\-'..- s gy \('$~ . 1.\1’




Figure 2

Third, a graph is called claw-free if it contains no induced subgraph
with vertices x,y,z,w, whose edges are precisely xw,yw,zw. Minty (1980)
designed a polynomial-time algorithm for solving the MWCP on complements of
claw-free graphs (the unweighted case was settled independently by Sbihi
(1978)). Graphs consisting of two vertex-disjoint cliques with at least five
vertices altogether are not complements of claw-free graphs, but they
trivially belong to TR3 o TRY.

Fourth, Hsu, Ikura and Nemhauser (1981) designed a polynomial-time
algorithm for solving the MWCP on graphs whose complements contain no odd
cycle longer than an arbitrary but fixed constant k. Graphs with more than
k+1 vertices and with no edges at all do not belong to this class, but they
trivially belong to TRS » TRY.

Finally, Fact 1 implies that for every t-bounded class C there is an
algorithm that solves any MWCP on any graph in C in O(nZt*Z) steps. To see

that no t-Bounded class contains TR3 a TR4, consider the sequence of graphs




.li’l.l.l‘l.l

61.62.63,... such that Gk has vertices VisV2seeeaVoy and the only nonadjacent
pairs are v{vy,V3Vg,e.eaVap_ 1VYok- It is easy to see that G e TR3 n TR4 for
all k. On the other hand, Gk has Zk maximal cliques, and so no t-bounded

class contains all Gk°

4. EXTENSIONS, LIMITATIONS, APPLICATIONS
The observation underlying our method is that any MWCP on a graph G can

be solved quickly whenever the vertex set of G is covered by a small number of
sets $1,55,...,5y such that

(i) each clique in G is a subset of some Si'

(11) each S; induces in G the complement of a bipartite graph.
(In Fact 3, we have N = (2) and each S, is some Qi U Qj.) The only reason
for featuring complements of bipartite graphs in (ii) is that any MWCP on any
of these graphs can be solved quickly; we could just as well use any other
class C of graphs such that, for some constant t, some algorithm solves the
MWCP on any G in C in 0(sizet) steps. We shall refer to such classes C as
t-solvable; their examples include the four classes discussed in the preceding
section (perfect graphs, complements of h-perfect graphs, complements of
claw-free graphs, and complements of graphs with no odd cycle longer than a

6 introduced in Section 2. To

constant), as well as the classes TR3,...,TR
generalize Fact 3, let us define a C-cover in G as any collection of subsets
51’52""’Sk of the vertex set of G such that each clique in G is a subset of
some 3;, and such that each S; induces in G a member of C. The generalization
goes as follows:

FACT 4. For every t-solvable class C there is an algorithm that, given
any graph G along with a C-cover $4,53,...,5, solves any MWCP on G in O(k

sizet) steps.||
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Now let f(G,C) stand for the smallest k such that G admits a C-cover
Sl,Sz,...,Sk. Clearly, Fact 4 provides a polynomial-time algorithm for
solving every MWCP on every graph in some class C* only if, for some
t-solvable class C and for all G in C*,

f(G,C) does not exceed a fixed polynomial in n. (4.1)
We are going to show that, for every class C that satisfies a certain
technical assumption, a randomly chosen graph G is extremely unlikely to
satisfy (4.1). To make this claim precise, let us first clarify the meaning
of "extremely unlikely". For this purpose, consider any property P that a
graph may or may not have, and let P(n) equal the number of graphs with
vertices vy,v,,...,v, that have the property.

It is customary to say that almost all graphs have property P if

P(n _
n‘.imc Z_H('(‘:hﬁ =1 (4.2)

(Observe that the denominator in (4.2) counts the number of graphs with
vertices VisVoseeesVps and so the ratio in (4.2) equals the probability that a
randomly chosen graph with these n vertices has property P.)
Throughout the remainder of this section, we write log x for logz X.
THEOREM 9, Let C be any hereditary class of graphs other than the class

of all graphs. Then for every positive ¢, almost all graphs G have

(% -¢) logn

f(G,C) > n <
Our proof of Theorm 9 is based on two lemmas.
LEMMA 1. For every graph F there is a constant ¢ such that almost all

graphs G have the following property: every induced subgraph of G with at

least ¢ log n vertices contains an induced subgraph isomorphic to F.
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PROOF. Let k stand for the number of vertices of F. Writing

a = exp ((—;—)k(k'l)/2 —Lg),

we shall prove the statement with ¢ = 2/log a. To begin, let p(s) denote the
probability that a randomly chosen graph with vertices WisWoeeoo We has no

induced subgraph isomorphic to F. We only need to show that

. n _
nlim_ (rc 10g rﬂ) p (lc tog nl) = 0.
For this purpose, let t(k,s) stand for the 1largest number t of sets
Ql’Qz,.t.’Qt SUCh that

Q1 = k for al1 i, [Q; o Q;] < 1 whenever i # j and

J

[t is easy to see that

p(s) < p(k)*008) < (1 RIS ¢ o (R i),

Erdgs and Hanani (1963) have shown that

S + o

In particular, t(k,s) 2 sZ/Zk(k-l) > 52/2k2 whenever s 2 so(k). Hence

2
p(s) s a3

whenever s 2 so(k),




and so

(2) p(s) < (na~3)" whenever s : So(K)-

-clogn_ -2

Since a , the desired result follows.|]|

LEMMA 2. For every positive §, almost all graphs G have at least
(% - §)log n
n

cliques of size Llog nJ.II
PROOF. As customary, we shall denote by P(A) the probability of event A,
and we shall let E(X) stand for the expected value of a random variable X. We

shall rely on the Chebyshev inequality, stating that

2 2
P(X 5 E(X)-t) s —sX ) = (EUD) (4.3)
E(XT) - (E(X))" + ¢

In addition, we shall use the fact that

< (D) G5 kyk
] ——=1—t' < (1+ (t-1) 2)° whenever t =1 (4.4)
i=0 () n
k
(for an elementary proof, see Chvatal (1979)).

Now let n and k be fixed and let a random variable X count the number of

cliques of size k in a randomly chosen graph with vertices VisVseseaVpe

Clearly,

(k
Ex) = (D) (3 °

...........................

.....................................

-------------
.......................................




2(5) - ()

k
e(x?) = (0) b (4 3)

Note that

ky -k i
08y ,E WGq) )

Ex)N? 150 (D)

and so (4.4) with t = 2K/2 implies

2 2.k/2
l < £ < exp k2 / .
(E(x))? "

Substituting into (4.3) we obtain

1 k2oK/2
P(X < 3 E(X)) < 4(exp — - 1).

.In addition, note that

-k k

E(X) 2 (-=5)%.

k 2%/2
In particular, if k = [log n_ then
1
. L e (2k/2
oM. TT7zsyteg n Tt and qln, exp Tp— = L

and so the desired result follows from (4.5).

l

(4.5)

PROOF OF THEOREM 9. By assumption, there is a graph F such that no graph

in C contains an induced subgraph isomorphic to F. We only need show that all

graphs G with the two properties specified in Lemma 1 and Lemma 2 have




.
v
“
-Q

(% -8)logn-c

v
L

f(G,C) > n

For this purpose, consider an arbitrary C-cover 51’52"°"Sk in G. W.l.o.g.,
L we may assume that each Si is minimal; then by Lemma 1, we have |Si| <clogn
for all i. Now Lemma 2 implies

1
5 - ¢8)log n k S,
n(2 1os < ¥ 2| il < k n,

which is the desired conclusion.||
Theorem 8 shows that for a randomly chosen graph G, Fact 4 is very
unlikely to yield a polynomial-time algorithm for solving the MWCP on G. On
the other hand, the results of this paper can be used to devise improved
heuristics or enumerative (non-polynomial-time) algorithms for solving the
MWCP on an arbitrary graph. Let C be any t-solvable class for some constant
t, and suppose that for an arbitrary graph G, a maximal induced subgraph G(S)
of G that belongs to C can be generated in polynomial time. This is the case,
for instance, with the classes TR and TR? introduced in Section 2. If Q is a
maximum-weight clique of G(S), then any clique of larger weight than Q must
contain some vertex of V\S. Denoting by N(v) the neighbor set of vertex v,
one can branch by replacing G with the collection of induced subgraphs
G(N(vy)), G(N(vz)\{vl}),...G(N(vp)-[vl,...,vp_l}) where [Vl""'vp} = V\S. A
» branch and bound algorithm of this type, using as C the class of graphs whose
: chromatic number equals their maximum clique size, was proposed by Balas and
Yu [1984] for the unweighted maximum clique problem. The algorithm was tested

on randomly generated graphs with up to 400 vertices and 30,000 edges with

considerably better results than earlier procedures based on straightforward
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branch and bound. The classes of graphs introduced in this paper can be used

in a similar fashion to obtain algorithms for the MWCP on general graphs.
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